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Abstract—We consider the problem of optimal long-term path
planning for off-shore sailing. This domain of application is
challenging as it combines uncertain and time varying wind
conditions with complex boat’s performances that depend on
the heading angle, the wind conditions and the sea state. The
wind is estimated from forecasts provided by the Global Forecast
System (GFS) files1 and the ship’s dynamic is evaluated with a
Velocity Prediction Program (VPP). Based on this, we build a
state generator that model state transitions. The corresponding
decision making problem has a high branching factor and a
large decision space. Thus, a Monte Carlo Tree Search (MCTS)
with Upper Confidence Bounds for Trees (UCT) algorithm is
implemented to find the sequence of headings that minimizes
travel time from a point A to a point B.

I. CONTEXT

Historically, the search for optimum tracks in transoceanic
crossings, from long-range prediction of wind, has been dealt
with the isochrons method [8]. This method requires little
computational resources and is therefore adopted by most of
the commercial sail-boat racing software. It provides real time
trajectory computation, however, it is purely deterministic and
does not model the inherent stochasticity of real world sailing.
The ultimate objective of this work would be to outperform
software based on the isochrons method. This research is part
of the IBOAT project and will be applied to an autonomous
sailing robot in order to cross the Atlantic ocean [2].

More recently, the problem of trajectory planning for off-
shore sailing has been simplified to short-term path planning.
In this downgraded problematic, the wind forecasts are not
taken into account. This problem has therefore been tackled
with new tools. Potential field algorithms [13] or optimization
of the distance’s time derivative [16] have been implemented
to drive the boat along an optimal trajectory. Both studies use a
velocity polar that is either generic [16] or based on experience
[13]. However, they only deal with deterministic processes
and dynamics. Indeed, they do not consider wind fluctuations
or uncertainty in the boat’s performances. Nevertheless, it
should be noted that [13] adapts the trajectory to the measured
changes in the local and instantaneous wind.

The stochastic nature of trajectory planning has been in-
vestigated for short term sail-boat racing. The probabilistic
features are incorporated either in the wind’s fluctuations [1] or
in the ship’s dynamics [6]. On the one hand, [1] consider deter-
ministic boat’s dynamics but stochastic wind’s changes. They

1http://nomads.ncep.noaa.gov

also incorporate the opponent’s actions into their decision
process. This formulation is solved by applying a stochastic
game approach to yacht match racing. On the other hand, [6]
focus on a fully observable environment but uncertain boat’s
dynamics. They derive an infinite horizon Markovian policy
using a value iteration algorithm and a total discounted reward.
The transition function for the boat’s position is a Gamma
distribution depending on the boat’s leeway angle. However,
all these papers differ from the problematic we wish to tackle
in their consideration of short period of time and distance
range. As a matter of fact, they do not profit from weather
forecasts to optimize the boat’s route on a larger scale.

Eventually, the work of [11] deals with long-term planning.
They rely on weather forecasts and consider different possible
weather scenarios to incorporate forecast uncertainty. They
solve the constructed problem using dynamic programming
recursion and considering that the boat’s performances are
deterministic.

These works rely on the Markov Decision Process (MDP)
framework which is a wide and well documented field [9],
[12]. It is a powerful tool to design intelligent agents that
progress autonomously, and for a long period of time, in
an uncertain environment through unreliable interactions. In
our case, since we model stochasticity in both the boat’s
dynamic and wind conditions, it is difficult in practice to derive
realistic transition functions. And therefore to use classical
MDP algorithms. As an alternative, we derive a simulator that
generates a new state from a previous state and a taken action.
This makes sampling possible and enables the exploration of
the MDP space by incrementally constructing a sequential
decision tree. As the decision space is almost infinite, we need
a efficient search algorithm to build an asymmetrical tree.

Monte Carlo Tree Search (MCTS) is a recent, best-first
search, framework [3] that is mostly used for online planning
[15]. However, several works presented off-line methods to
capitalize on the knowledge accumulated during the search [7],
[4]. The brightest example being the AlphaGo victory which
has been a major breakthrough in the AI community [14].

MCTS is thus a relevant and advisable framework to in-
vestigate path planning for autonomous off-shore sail-boats.
Indeed, uncertain wind conditions and boat performances give
rise to complex stochastic dynamics that may generate an
infinity of states. Coupling this to long-term planning, which
requires large temporal horizon, induces a gigantic search



space.
In this work we first describe the environment and charac-

terize the wind conditions. Then, the dynamics of the agent,
which is a sail-boat in our case, are defined. From this,
the interactions between the agent and its environment are
modelled through a generative model. At this point, we present
the MCTS framework and implement a specific algorithm to
explore the decision space and produce a prescription P . This
prescription is the sequence of actions that minimizes the
duration of the agent’s course. Finally, the strategy produced
by the search is tested and the perspectives of the work are
discussed.

II. THE ENVIRONMENT

A. Generalities on the wind model and weather forecast

We chose the open-source Global Forecast System (GFS)
model which is the most convenient one for our application.
Because the boat is slow, we picked the one with the highest
spatial resolution. Therefore, we have daily 0.25◦ spatial
resolution outputs providing an eight days forecast. The time
step of the forecasts is 3 hours. These grids are linearly
interpolated to fit a continuous space approach. They are also
interpolated in time to match the simulation’s time step. From
the 400 GB daily output of the GFS we only consider the 10m
above water surface wind (AWSW).

B. Modelling the forecast uncertainty

We used the GFS to have an estimate of the encountered
wind on the boat’s track. The data is provided by NOAA
servers2. This model covers an eight days horizon but do not
give any measure of the uncertainty nor expresses how this
uncertainty increases for long term estimations. In order to
model the degradation of the model precision with time, we
used the Global Ensemble Forecast System (GEFS) which is
also provided by NOAA servers3. GEFS runs several models
from perturbed initial conditions and computes the ensemble
spread of the models [18]. As shown in figure 1, the wind
speed ensemble spread increases as we look later in the
forecasts. This applies also for the wind direction. Hence, in
this work we assume that GFS provides a good estimate of the
forecast mean value and that GEFS provides a good measure
of the uncertainty. Finally, it can be seen that beyond three
days the forecasts become rather unreliable.
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Fig. 1. Gaussian wind speed distribution around GFS mean given GEFS
standard deviation

2http://nomads.ncep.noaa.gov:9090/dods/gfs 0p25/gfs
3http://nomads.ncep.noaa.gov:9090/dods/gens bc/gens

The characteristics of the GFS and GEFS outputs are
summarized in the following table.

∆t (hours) ∆x (◦) T (days) Coverage (-) Data (-)
GFS 3 0.25 10 Worldwide 10 m AWSW

GEFS 6 1 15.5 Worldwide 10 m AWSW

TABLE I
GFS AND GEFS CHARACTERISTICS SUMMARY

III. THE DYNAMICS OF THE AGENT

A. The Velocity Prediction Program (VPP)

Based on [13], [6] and [11], we have on a Velocity Predic-
tion Program to determine the velocity of the boat for a given
wind magnitude and orientation. To this end, we made use of
the Matlab script gvpp provided by Gianluca Meneghello4.
This method is based on the work of [10] and relies on
the equilibrium between the aerodynamic and hydrodynamic
forces. These forces mostly derive from empirical considera-
tions. The VPP assumes that all the controllable factors (such
as the sail configuration) are set so as to maximize the ship
speed under the given wind conditions. Hence, from the 10m
AWSW, it outputs the velocity V of the boat in the direction
of heading (thus neglecting the drifting of the vessel).

B. Adapting the VPP

a) Speeding up computation: To speed up computations
and gain flexibility, these VPP results are fitted with a two-
dimensional fifth-order polynomial. The relative error between
the fit and the data is less than 3.5%.

b) From VPP to long-term mean speed: In reality, a
boat can not cruise at all points of sail α (the angle between
heading and wind direction). There is two no-go zones : one
for 0◦ < α < αmin = 35◦ (the boat cannot sail directly into
the wind) and another for 160◦ < α < αmax = 180◦. To
go toward this directions a boat must tack. However, in our
case we will consider that the boat keeps a constant point of
sail over a long period of time. Hence, the time lost during
a tacking manoeuvre is negligible. Following this logic we
will assume that the boat can sail towards the no-go zones
but with a reduced speed. In practice, we will consider that
the speed is equal to the Velocity Made Good (VMG) that
is the actual velocity projected toward the goal. In addition,
it has been observed that for wind above 19 m/s the boat’s
performance change little. The resulting velocity polar in
figure 2 is coherent with the boat’s dynamics. The velocity
is maximal for running points of sail but diminishes if the
point of sail is greater than αmax. Finally, the vessel cannot
sail into the wind if this one is too strong.

4https://sourceforge.net/projects/gvpp/
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Fig. 2. Boat velocity polar in [m/s] wrt. point of sail [deg] for different wind
magnitudes

C. Introducing stochastic boat performances
Until now the boat’s dynamics were deterministic: a given

wind and point of sail produce a unique boat velocity. This
is not feasible since we did not fully model the boat or
the sea state. It is known for example that wind gusts or
waves drastically impact the boat’s performances. To account
for these physics we did not modelled, we add noise to
the velocity of the speed polar. From the deterministic boat
velocity V and the boat heading γ we can compute the boat
velocity toward East U and toward North V as follow :

U = V sin γ, V = V cos γ (1)

Then, we define a variance σ2 proportional to the boat
deterministic speed :

σ2 = κV (2)

where κ is an arbitrary constant set to 20%. Finally, the
stochastic velocities u′ and v′ are picked from a normal
distribution :

u′ ∼ N (U, σ2), v′ ∼ N (V, σ2) (3)

D. Modelling the current
The VPP model considers static water surface, hence to get

the actual velocity of the boat we must add the water surface
velocity. The surface current can be approximated to be K=3%
of the 10m AWSW [17]. Hence, for arbitrary wind velocities
uw and vw, the total boat velocity is given by :

u = u′ +Kuw, v = v′ +Kvw (4)

IV. THE INTERACTION MODEL

In this section we describe how we built a simulator S that,
for a given action (boat heading γ), and a given boat state s,
generates a new state s′ : S(s, γ) = s′.

A. The different blocks of the simulator
a) Boat states: a boat state is defined by a date t, a

latitude ϕ and a longitude λ :

s = (t, ϕ, λ)T (5)

b) Wind conditions: the GFS and GEFS files are linearly
interpolated over the domain. Hence, we get two functions
W avg(t, ϕ, λ) and W spr(t, ϕ, λ) that respectively output the
mean wind and the ensemble spread. Thus, for a given state
s, we can build the observed wind velocities u′w and v′w as
follow :

W avg(s) = (Uw, Vw)T, W spr(s) = (σu, σv)
T

(u′w, v
′
w) ∼ (N (Uw, σ

2
u),N (Vw, σ

2
v))T

(6)

c) Boat dynamic: From the last paragraph we get a
stochastic wind condition for each given state. Coupling this
wind condition with the boat and current model of section III
for a given boat heading, we can compute a noisy boat velocity.
We consider this velocity constant and we take its modulus
and argument with respect to the true North. Then, given a
time-step dt, we get a covered distance ∆L =

√
u2 + v2×dt

towards a direction ψ (that may differ from the boat heading
due to the noisy wind and dynamic and the surface current),
this step is thus the simplest integration possible.

d) Spherical geometry: Since the vessel is sailing on
the spherical Earth surface we use the Geodesic formulae G1

and G2 to compute distances and headings. These formulae
make the link between two points on the Earth surface
x1 = (ϕ1, λ1), x2 = (ϕ2, λ2) and the distance D between
them as well as the bearing θ from x1 to x2 :

G1(x1,x2) = (D, θ)T, G2(x1, (D, θ)
T) = x2 (7)
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Fig. 3. Simulator’s steps

B. Testing the Simulator

To test the simulator we launch 30 boats from the same
departure state s = (0, 47.5, 356.5)T with a constant heading
of 225◦ for a 6 days navigation. They all sail with the same
GFS and GEFS data. To represent the trajectories we chose
an Azimuthal Equidistant Projection centred on the departure
state. This means that the distances from the departure are
preserved and that all points that lie on a circle around the
departure are equidistant on the surface of the Earth.
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Fig. 4. 30 boats simulated with (a) stochastic wind and dynamics, (b)
deterministic wind and dynamics, (c) deterministic wind and stochastic
dynamics, (d) stochastic wind and deterministic dynamics

From figure 4 we can conclude that the simulator is coher-
ent. Stochasticity has two effects: it spreads the boats trajecto-
ries and it modifies the distance between the arrival points and
the departure. Without the stochastic modelling all trajectories
are identical. It should be noted that the stochastic dynamic of
the boat impacts more the spreading of the trajectory than the
covered distance. The opposite occurs regarding the stochastic
wind: the trajectories are close to one another but vary in
length. This is due to the fact that the wind affects only the
direction of motion of the boat through surface current (with a
coefficient of 3%) but plays a major role in the velocity of the
vessel. Whereas the boat’s dynamic affect both its direction of
motion and its speed.

Figure 5 displays a specific trajectory under stochastic wind
and dynamics.
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Fig. 5. One boat trajectory under uncertain wind and boat’s dynamics

A yellow dot represents a state, the solid black line rep-
resents the constant 225◦ heading and the blue arrows are a
quiver of the mean wind exerted on the boat at the correspond-
ing state. This trajectory is coherent, we notice that the boat
is deported away of the constant heading line by the wind.

Finally the boat sails faster (dots are more spread out) when
the wind come from behind (running point of sails).

V. THE FRAMEWORK

A. Monte Carlo Tree Search (MCTS)

The definition of MCTS given by [3] is the following :
Monte Carlo Tree Search is a method for finding op-
timal decisions in a given domain by taking random
samples in the decision space and building a search
tree according to the results.

In other words, for large decision spaces, where an exhaustive
search is not tractable, we pick random samples to explore the
decision space. In order to estimate the value of the picked
decision we run a simulation: the Default Policy. It can be
a random or statistically biased sequence of actions applied
to the state resulting from the picked decision. The Default
Policy is applied until a terminal condition is reached. The
terminal state that we reach is used to evaluate a reward which
is incorporated in the value of the picked decision. A tree is
built in an asymmetric and incremental manner in order to
explore the decision space. Each node of the tree represents a
sequence of decisions and possesses a value which is function
of the reward obtained from the Default Policy.

B. Upper Confidence Bounds for Trees (UCT)

In order to build the tree in an asymmetrical manner, i.e.
to explore only promising decisions and to avoid loosing time
and computational power with inefficient decisions, we need a
clever Tree Policy. A Tree Policy is a method that computes the
values of the tree’s nodes and that selects the most promising
one. Thus, at each iteration of the search, the Tree Policy
chooses the node to expand and thus dictates how the decision
space is explored. In this work we will use the most popular
algorithm in the MCTS family: Upper Confidence Bounds for
Trees (UCT). We start at the root node of the tree and we select
the child with the highest UCT value. If this child node is non-
terminal and not fully expanded, we expand it. Otherwise, we
look at the UCT values of its children and so on. The routine
used to expand a node is described in section VI. The UCT
value of a child node j is given by :

UCT = ∆j + 2Cp

√
2 log n

nj
(8)

Where ∆j is the mean reward of all the decisions sequences
that passed through node j. nj is the number of decisions
sequences that involved the child node j, whereas n is the
number of decisions sequences that involved the parent node.
Cp is a positive coefficient: the exploration coefficient. The
left-hand term represents the value we already obtained from
node j. If it is high, then j is valuable and we should continue
to exploit it. The right-hand side represents the exploration
term. Indeed, if a child node is not explored, the right hand
side increases as

√
log n with n the number of times the parent

node has been explored. Thus, the UCT of unexplored nodes
will eventually grow and have the Tree Policy select them.



One step of the MCTS-UCT algorithm is visually represented
in figure 6.

Fig. 6. One step of the MCTS-UCT algorithm generating a reward ∆,
extracted from [3]

VI. THE IMPLEMENTATION OF MCTS-UCT

A. Defining the objects

a) The available actions A: the purpose of the tree-
search is to find the optimal sequence of actions, the pre-
scription P , to go from a departure point xs to a destination
point xd. The optimal sequence is the one that minimizes,
in average, the date of arrival. The actions are the headings
followed by the vessel. Thus, they range from 0◦ to 360◦. In
order to reduce the branching factor of the tree, the continuous
range is reduced to a discrete set during the search. The set
of headings starts at 0◦ and increases up to 360◦ with a step
of 45◦.

b) A node ν: in this architecture only the root node ν0
represents a state. The other nodes represent a sequence of
actions executed from the initial state. The attributes of a node
are:

• state s: only for the root node. The state of the root
node is the initial state s0 corresponding to t = 0 and
the departure point xs.

• parent: a reference toward the parent node.
• origin a(νl): the action a ∈ A taken from the parent to

expand it and create the leaf node νl.
• children: a list of references toward the children nodes.
• actions a ⊂ A: a shuffled list of the remaining available

actions. Every time the node is expanded using one of
the actions, this action is not available any more.

• R: sum of all the rewards ∆ that passed through the node.
• N : number of times the node as been involved in a

decision sequence.
• depth: corresponds to the number of actions taken from

the root node to arrive to the node. Equivalent to the time
increment from the initial state.

c) A tree: the tree is the object that collects the created
nodes and possesses the methods implementing the MCTS
search.

• rootNode s0: a reference pointing toward the root node
object.

• ite: the number of nodes that have been created.

• budget: the total number of nodes that will be created
during the search.

• Simulator S: a reference toward a simulator object like
the one described in section IV.

• destination xd: the latitude and longitude of the destina-
tion provided by the initialization of the tree.

• TimeMax T : the temporal horizon on which the search is
carried out. Also the horizon of the simulator.

• TimeMin Tm: an arbitrary estimate of the minimum time
required by the boat to go from the departure to the
destination. It is provided by the tree initialization.

• depth: maximum depth of the tree.
• nodes: a list of references toward the created nodes to

keep track of the chronology of the tree’s growth.
• rewards: a list of all the rewards that were obtained during

the search.

B. Defining the processes

a) Initialization: this step converts a mission heading and
a time horizon into a destination point and an estimated date
of arrival. It can be divided in several sub-steps:
• (1) Estimating a covered distance: to estimate, given the

wind conditions, the distance covered by the boat, Nb =
50 boats are simulated over the whole time horizon. They
sail straight toward the mission heading.

• (2) Computing the corresponding destination: due to the
drifting, the Nb boats do not actually sail with the correct
heading. Therefore, the estimated covered distance is
reduced taking a fraction cd of it. The resulting distance
is then projected toward the actual mission heading. The
corresponding geographical point is the destination.

• (3) Estimating a date of arrival: then, to get an estimate
of the date at which the boat will arrive to destination,
Nb other boats are launched. These boats modify their
heading to match the destination bearing, hence they
eventually get to the destination. The fastest boat is taken
as a reference.

Figure 7 shows the trajectories resulting from the initialisation
of a search that has a time horizon of 2 days and a mission
heading of 235◦. The blue point is the departure.
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Fig. 7. Initializations trajectories



All the orange points are the arrivals of the Nb boats
simulated in (1). The blue trajectory is one of them. It can be
observed that the boat drifted toward East due to the lateral
wind. The red point is the destination obtained from (2). The
distance with respect to the departure is cd = 3/4 of the
minimal distance covered in (1). The yellow trajectory is one
of the boats sent to estimate the time of arrival in (3). Finally
the dark line indicates the mission heading.

b) The Default Policy: The Default Policy is to go
straight toward the destination. A Default Policy followed
from the departure would look like the yellow trajectory
in figure 7. For an arbitrary node, it is necessary to first
determine the corresponding state. This state can be estimated
by starting from the root node and executing the sequence of
actions corresponding to the node. Then, at each time step the
destination bearing is computed to adapt the boat heading and
reach the destination. Eventually, the reward is computed as :

∆ = exp

(
T × c− Td
T × c− Tm

)
(9)

Where T is the search time horizon and Td is the date of
arrival of the boat after following the Default Policy. Tm is
obtained from step (3) of the initialization and c is a constant
to avoid a division by zero. In our case c = 1.001. If the boat
cannot reach the destination over the time horizon following
the Default Policy the reward is set to zero. Thus, the reward
is positive but can be greater than 1. An exponential reward
instead of a linear one encourages boats that are faster than
the initialisation ones. It also increases the distinction between
promising solutions.

c) Terminal and fully expanded nodes: a state is terminal
if it is at destination or if it reached the time horizon. Thus, a
node is terminal if its depth corresponds to the time horizon.
A node is fully expanded if it has no more actions available.

Algorithm 1: The UCT algorithm

function UCTSEARCH(s0):
create root node ν0 with state s0
while within computational budget do

νl, s← TREEPOLICY(ν0, s0)
∆← DEFAULTPOLICY(νl, s)
BACKUP(νl,∆)

ν ← ν0
while ν has children do

ν ←BESTCHILD(ν, 0)
append a(ν) to P

return P

function TREEPOLICY(ν, s):
while s is nonterminal do

if ν not fully expanded then
return EXPAND(ν, s)

else
ν ← BESTCHILD(ν, Cp)
s← S(s, a(ν))

return ν, s

function EXPAND(ν, s):
choose random a ∈ a(ν) the untried actions of ν
add a new child ν′ to ν with a(ν′) = a
s← S(s, a)

return ν′, s

function BESTCHILD(ν,Cp):
νb ← max

(
R(ν′)
N(ν′) + c

√
2 logN(ν)
N(ν′)

) ∣∣∣ν′ ∈ children of ν

return νb

function DEFAULTPOLICY(ν, s):
while s is nonterminal do

D, θ ← G1(x,xd) with x the position of s
s← S(s, θ)

return reward for state s

function BACKUP(ν,∆):
while ν is not null do

N(ν)← N(ν) + 1
R(ν)← R(ν) + 1
ν ← parent of ν

This algorithm is adapted from Algorithm number 2 in [3].

VII. RESULTS

In this section the results of the search are presented. We
propose explanations for what is observed. The limitations of
the work are discussed. We suggest hints that could improve
the model.

A. Discussion on the exploration coefficient

The exploration coefficient Cp in equation 8 is a critical
parameter of UCT. As a matter of fact, it drives how much the
tree search is greedy and looks for states that give “immediate”
reward. For example, with a low exploration coefficient, nodes
that in the beginning did not generate high rewards are
abandoned and the tree quickly grows in the direction of the
nodes that provided value. This is positive in the fact that, with
such a logic, we focus on strategies that generate value and
we do not loose time with the strategies that have low ”short-
term” reward. The danger is to miss an optimal solution that
would require some initial investments (take some actions that
do not result in a short arrival time using the Default Policy)
but that ends up giving optimal results in the long run.

There is therefore a trade-off to find between reaching an
important depth for a given computational budget and not
missing the optimal solution. [3] advises a value of 1/

√
2 but

indicates that Cp is greatly problem dependent.
a) Asymmetrical tree growth: we show here the tree

growth for two almost identical searches5. They have the same
initialisation and the parameters of table II.

5The Python script takes 15 min on an Intel R© CoreTM i7-5500U CPU
2.40GHz



ite T imeMax time step mission heading cd
15000 2 days 1 hour 235◦ 3/4

TABLE II
PARAMETERS OF THE SEARCH

They only differ in the exploration coefficient. Search (b)
has a lower exploration coefficient and is therefore more
”greedy”.

20 15 10 5 0

5

0

5

20 15 10 5 0

6

4

2

0

2

4

6

8

20 15 10 5 0

5

0

5

20 15 10 5 0

6

4

2

0

2

4

6

8

20 15 10 5 0

5

0

5

20 15 10 5 0

6

4

2

0

2

4

6

8

(a) Cp = 1/
√

2, tree depth=14 (b) Cp = 1/10, tree depth=20

Fig. 8. Asymmetrical tree growth for two searches with different Cp

Each picture in figure 8 is a visual representation of the
tree being built. Each dot is a node. The big red dot is the
root node. The grey scale indicates the depth of the node. The
lighter the color the deeper the node. Each node is placed
around its parent depending on the action that expanded it.
If the action from the parent node to the child node is for
example 0◦ the child is place vertically above. Now if the
action is 270◦, the node is place horizontally on the left of its
parent. The pictures are therefore polar representations of the
tree. A column in figure 8 presents the chronological growth
of the tree, with the early nodes on the top picture and the
final tree on the bottom of the column. The red dotted line
represents the optimal branch of the tree and corresponds to
the best found sequence of actions. This sequence of actions is
the output P of the UCT Search and we call it the prescription.

It can be observed that the trees differ in depth, in shape
and in their prescription. The tree (a) is denser but tree (b)
is deeper. This means that (a) tried more alternatives. It starts
by exploring symmetrically around the root node. Once it has
found a preferred direction (around 315◦) it starts exploring
preferentially in this direction but keeps expanding a few nodes

around the root. On the other hand, (b) focuses only in one
direction from the root and this choice is never questioned.

The prescribed sequence of actions P are :

P(a) : (315, 315, 270, 315, 315, 315, 315, 225, 315, 270,

225, 270, 315, 225)T

P(b) : (270, 270, 0, 315, 270, 315, 315, 270, 225, 225, 225, 225,

315, 225, 270, 270, 225, 180, 0)T

B. Consequences on the arrival date

In this subsection we test the prescriptions.
a) The test procedure: for each sequence of actions, 2400

boats are launched. Each boat follows Na actions from the
prescription (either the whole sequence or a subset) and then
follows the Default Policy towards the destination. The Default
Policy (going in a straight line toward objective) can be done
either with continuous headings (Continuous) or with headings
from the discrete set (Discrete). Of course a Continuous
Default Policy is more effective since the steering is more
precise. Also, Default Policy applied from the departure point
is tested, this is what novice navigator do in practice. The
arrival dates are measured in time steps (hours), the whole
navigation horizon representing 48 time steps of one hour (2
days).

b) The mean dates of arrival: The results of these tests
are consigned in table III. This last one is sorted : best strategy
is first.

Test no Pi Na Default Policy Mean Arrival Date
1 (a) 10 Discrete 45.117
2 (a) 10 Continuous 45.424
3 (a) 14 Discrete 45.753
4 - 0 Continuous 45.900
5 (b) 14 Discrete 45.936
6 (b) 14 Continuous 46.058
7 - 0 Discrete 46.625
8 (b) 20 Discrete 46.787

TABLE III
RESULT OF THE TESTS ON THE DIFFERENT STRATEGIES

First of all the (a) strategy is better than the (b) one in all
cases. The Cp coefficient, that characterizes the exploration-
exploitation trade off is thus more pertinent in the (a) search. In
the (b) search, Cp is set so low that too little exploration takes
place. Hence, the search is confined in a sub-optimal solution
without being challenged by the exploration of alternatives.
Moreover, with a low exploration coefficient, the (b) search
is more sensible to the noise present in the reward model.
Eventually, the tree reaches a significant depth but misses the
good solution. We can conclude that it is more effective to have
a reduced but optimal sequence of actions than a significant
but sub-optimal prescription.

Secondly, to get the best out of a prescription, it should
not be used to its final depths. Indeed, using only the 10 first
actions of (a) is more profitable than using all of them. This
is due to the fact that the last 4 recommended actions have
not been tried much by the UCT algorithm. Therefore, the
actual value of these decisions is not accurately predicted by



the mean of the obtained rewards. This might explain why it
is more profitable to run only the first ten steps of P(a).

Thirdly, a prescription should be used with the Default
Policy that has been used during the search. This may seem
trivial since the strategy has been optimized for this particular
Default Policy. However, it is not trivial that the performance
gain from the optimal strategy outpaces the performance loss
from using discrete headings during the Default Policy. This
performance loss is significant as we can see in table III.
Indeed, using the Default Policy from the departure is faster
by 43 min if the heading are Continuous.

Finally, the main result is that the sequence derived from
search (a), Test no1, is faster by 43 min than the novice, but
continuous steering Test no4.

c) The trajectories: To get a better understanding of
the strategy produced by the search, figure 9 presents the
trajectories corresponding to table III.
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(1) 100 test trajectories (2) mean test trajectories
and corresponding wind

Fig. 9. Test trajectories under prescription and Discrete Default Policy (red
and black) and under Continuous Default Policy (green)

The red and black trajectories correspond to Test no1 in
table III, the red part corresponds to the Na actions of the
prescription and the black trajectories are the corresponding
Default Policies. The green trajectories represent Test no4 and
are generated by a Continuous Default Policy applied from the
departure. One can notice that the optimal route uses a tacking
route. This is really interesting because the model does not
explicitly take into consideration the tacking action. However,
the search is capable of rediscovering this well-known strategy
to compensate for the low velocity of the vessel when it is
sailing into the wind. By following this tacking route, the boat
covers more distance but has better points of sail along its
course. Eventually it is faster over the whole trajectory and
wins the race.

For the comparison, the green trajectory has a more direct
route, however, it sails closer to the wind and has thus a
reduced velocity over the whole race.

C. Perspectives

We have seen that Monte Carlo Tree Search could be effi-
ciently applied to long term path planning for off-shore sailing.
This problem is highly uncertain and combines stochastic
wind forecasts, whose accuracy decay with time, and noisy
boat performances, that affect its velocity both in magnitude
and direction. However, the algorithm is able to retrieve a

navigation strategy employed by sailors. In addition, following
a prescription during only the first quarter of the cruise is
sufficient to gain 43 minutes on a two day journey.

The work done here could be generalized to continuous sets
of actions using Double Progressive Widening as it has been
proposed by [5]. However, having a heading resolution of 45◦

is not that restrictive. Indeed, the aim of the path planning,
or high level control, is to give a general direction of motion
to the system. Lower level controls operate then around the
prescribed heading to optimize short term performances from
instantaneous and noisy measurements.
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